VASAVI COLLEGE OF ENGINEERING (AUTONOMOUS), HYDERABAD Accredited by NAAC with A++ Grade

 B.E. (Civil Engg. : CBCS) III-Semester Main \& Backlog Examinations, January 2024

 B.E. (Civil Engg. : CBCS) III-Semester Main \& Backlog Examinations, January 2024 Strength of Materials-I

 Strength of Materials-I}

Time: $\mathbf{3}$ hours
Max. Marks: 60
Note: Answer all questions from Part-A and any FIVE from Part-B
Part-A $(10 \times 2=20 \mathrm{Marks})$

Q. No.	Stem of the question	M	L	CO	PO
1.	State the relationship between modulus of elasticity and bulk modulus of a material.	2	1	1	1
2.	An axial pull of 20 kN is acting on a bar of length 250 mm with a diameter of 32 mm . If the modulus of clasticity is $2 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}$, compute the elongation of the bar.	2	1	1	2
3.	Draw SF and BM diagram for simply supported beam of span L carrying a point load W at a distance of a from the left end. Take $a+b=L$.	2	2	2	2
4.	A cantilever beam is 3 m long and carries a uniformly distributed load of $12 \mathrm{kN} / \mathrm{m}$ over the entire span. Draw the BM diagram for the beam.	2	2	2	2
5.	A rectangular beam 250 mm deep is simply supported over a span of 3 m and subjected to uniformly distributed load of w / m run over the entire span. If the bending stress is limited to $60 \mathrm{~N} / \mathrm{mm}^{2}$, compute w. Take $\mathrm{I}=8 \times 10^{6} \mathrm{~mm}^{4}$.	2	2	3	2
6.	A rectangular beam 100 mm width and 200 mm depth is subjected to a shear force of 60 kN . Compute the maximum shear stress.	2	2	3	2
7.	Define principal stress.	2	1	4	1
8.	Sketch the core of a circular section of diameter D.	2	1	4	2
9.	State the expressions for circumferential stress and longitudinal stress of a thin cylindrical shell subjected to internal fluid pressure.	2	1	5	1
10.	State the expressions for the radial pressure and hoop stress at any point in case of a thick cylinder.	2	1	5	1
	Part-B ($5 \times 8=40 \mathrm{Marks}$)				
11. a)	A copper tube 80 mm external diameter and 10 mm thick encloses centrally a solid steel bar of 20 mm diameter. The bar and the tube are rigidly connected at the ends at a temperature of $20^{\circ} \mathrm{C}$. Compute the stresses in each metal when temperature is raised to $170^{\circ} \mathrm{C} . \mathrm{E}_{\mathrm{s}}=2 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}, \mathrm{E}_{\mathrm{c}}=1 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}$, $\alpha_{\mathrm{s}}=12 \times 10^{-6} /{ }^{\circ} \mathrm{C}, \alpha_{\mathrm{c}}=18 \times 10^{-6} /{ }^{\circ} \mathrm{C}$	4	3	1	2
b)	A bar of steel has a diameter of 28 mm and is 200 mm long. It is subjected to a tensile load of 250 kN along the longitudinal axis. Compute the change in the length and diameter of the bar and change in volume. Take $\mathrm{E}=2 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}$ and $\mu=0.3$.	4	3	1	2
12. a)	A simply supported beam of span 5 m is carrying a uniformly distributed load of $25 \mathrm{kN} / \mathrm{m}$ run over the entire span. Draw SF and BM diagrams and compute maximum bending moment.	4	4	2	2

b) A cantilever of length 4 m carries point loads of 8 kN and 10 kN at distances of 2 m and 4 m from the fixed end respectively. Draw the shear force and bending moment diagrams.
13. a) A simply supported beam of span 4 m carries a point load of 20 kN at the midspan. The cross section of the beam is T-section. The flange is 200 mm wide and 20 mm thick and the web is 15 mm thick and 160 mm deep. Compute the bending stresses at the midspan.
b) Derive the expression for shear stress across the depth of a solid circular section of diameter D subjected to a shear force of F. Sketch the shear stress distribution.
14. a) A short column of external diameter 400 mm and internal diameter 250 mm carries a load of 80 kN with an eccentricity of 125 mm . Compute the maximum and minimum stresses in the section.
b) The stresses at a point are given by normal stress of $100 \mathrm{~N} / \mathrm{mm}^{2}$ (tensile) along x-direction, $60 \mathrm{~N} / \mathrm{mm}^{2}$ (tensile) along y-direction and shear stress of $20 \mathrm{~N} / \mathrm{mm}^{2}$. Compute the principal stresses.
15. a) Calculate the change in diameter, change in length and change in volume of a thin cylindrical shell of 1200 mm diameter, 15 mm thick and 4 m long when subjected to an internal pressure of $4 \mathrm{~N} / \mathrm{mm}^{2}$. Adopt $\mathrm{E}=2 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}$ and Poisson's ratio $\mu=0.30$.
b) Compute the thickness of metal required for a cylindrical shell of internal diameter 160 mm to withstand an internal pressure of 60 MPa . The maximum hoop stress is not to exceed 120 MPa .
16. a) A reinforced short concrete column $300 \mathrm{~mm} \times 400 \mathrm{~mm}$ in section is reinforced with steel bars with a total area of $2800 \mathrm{~mm}^{2}$. The column carries a load of 400 kN . If the modulus of elasticity for steel is 15 times that of concrete, compute the stresses in concrete and steel.
b) A simply supported beam of span 4 m is subjected to a uniformly distributed load of $20 \mathrm{kN} / \mathrm{m}$ over the entire span. The cross section is rectangular with a width of 250 mm and depth of 400 mm . Compute the bending stress at the mid-span.
17. Answer any two of the following:
a) A cantilever beam of span 3 m is made up of T-section and carries a point load of 60 kN at the free end. The flange is 250 mm wide and 20 mm thick while the web is 20 mm wide and 180 mm deep. Compute the bending stresses at the fixed end of the beam.
b) At a point in a beam the normal stress along its length is $70 \mathrm{~N} / \mathrm{mm}^{2}$. The shear stress at that point is $25 \mathrm{~N} / \mathrm{mm}^{2}$. Compute the stresses on a plane whose normal is inclined at 30° to the longitudinal axis. Also compute the principal stresses and planes on which they act.
c) A thin cylinder of diameter 220 mm and thickness 10 mm is subjected to an internal fluid pressure of $8 \mathrm{~N} / \mathrm{mm}^{2}$. Compute the circumferential and longitudinal stresses in the cross section of the cylinder.

M : Marks; L: Bloom's Taxonomy Level; CO; Course Outcome; PO: Programme Outcome

i)	Blooms Taxonomy Level - 1	20%
ii)	Blooms Taxonomy Level - 2	30%
iii)	Blooms Taxonomy Level - $\& 4$	50%

