	Hall	Ticket	Num	ber:
--	------	--------	-----	------

Time: 3 hours

Code No. : 13166 N/O

VASAVI COLLEGE OF ENGINEERING (AUTONOMOUS), HYDERABAD Accredited by NAAC with A++ Grade

B.E. (Civil Engg. : CBCS) III-Semester Main & Backlog Examinations, January 2024

- - - -

Strength of Materials-I

. . .

Max. Marks: 60

Note: Answer all questions from Part-A and any FIVE from Part-B

$Part-A (10 \times 2 = 20 Marks)$								
Q. No.	Stem of the question	M	L	СО	PO			
1.	State the relationship between modulus of elasticity and bulk modulus of a material.	2	1	1	1			
2.	An axial pull of 20 kN is acting on a bar of length 250 mm with a diameter of 32mm. If the modulus of elasticity is 2×10^5 N/mm ² , compute the elongation of the bar.	2	1	1	2			
3.	Draw SF and BM diagram for simply supported beam of span L carrying a point load W at a distance of a from the left end. Take $a+b=L$.	2	2	2	2			
4.	A cantilever beam is 3 m long and carries a uniformly distributed load of 12 kN/m over the entire span. Draw the BM diagram for the beam.	2	2	2	2			
5.	A rectangular beam 250 mm deep is simply supported over a span of 3 m and subjected to uniformly distributed load of w N/m run over the entire span. If the bending stress is limited to 60 N/mm ² , compute w. Take $I = 8 \times 10^6 \text{ mm}^4$.	2	2	3	2			
6.	A rectangular beam 100 mm width and 200 mm depth is subjected to a shear force of 60 kN. Compute the maximum shear stress.	2	2	3	2			
7.	Define principal stress.	2	1	4	1			
8.	Sketch the core of a circular section of diameter D.	2	1	4	2			
9.	State the expressions for circumferential stress and longitudinal stress of a thin cylindrical shell subjected to internal fluid pressure.	2	1	5	1			
10.	State the expressions for the radial pressure and hoop stress at any point in case of a thick cylinder.	2	1	5	1			
	Part-B (5×8 = 40 Marks)							
11. a)	A copper tube 80 mm external diameter and 10 mm thick encloses centrally a solid steel bar of 20 mm diameter. The bar and the tube are rigidly connected at the ends at a temperature of 20° C. Compute the stresses in each metal when temperature is raised to 170° C. $E_s = 2 \times 10^5 \text{ N/mm}^2$, $E_c = 1 \times 10^5 \text{ N/mm}^2$,	4	3	1	2			
	$\alpha_{\rm s} = 12 \times 10^{-6} / {}^{\circ} {\rm C}, \ \alpha_{\rm c} = 18 \times 10^{-6} / {}^{\circ} {\rm C}$							
b)	A bar of steel has a diameter of 28mm and is 200 mm long. It is subjected to a tensile load of 250 kN along the longitudinal axis. Compute the change in the length and diameter of the bar and change in volume. Take $E = 2 \times 10^5 \text{N/mm}^2$ and $\mu = 0.3$.	4	3	1	2			
12. a)	A simply supported beam of span 5m is carrying a uniformly distributed load of 25kN/m run over the entire span. Draw SF and BM diagrams and compute maximum bending moment.	4	4	2	2			

:: 2 ::

Code No. : 13166 N/O

I)	A cantilever of length 4m carries point loads of 8kN and 10kN at distances of 2m and 4m from the fixed end respectively. Draw the shear force and bending moment diagrams.	4	3	2	2
13.	a)	A simply supported beam of span 4 m carries a point load of 20 kN at the mid- span. The cross section of the beam is T-section. The flange is 200 mm wide and 20 mm thick and the web is 15 mm thick and 160mm deep. Compute the bending stresses at the midspan.	4	4	3	2
1	5)	Derive the expression for shear stress across the depth of a solid circular section of diameter D subjected to a shear force of F. Sketch the shear stress distribution.	4	3	3	2
14.	a)	A short column of external diameter 400 mm and internal diameter 250 mm carries a load of 80 kN with an eccentricity of 125 mm. Compute the maximum and minimum stresses in the section.	4	2	4	2
	b)	The stresses at a point are given by normal stress of 100 N/mm ² (tensile) along x-direction, 60 N/mm ² (tensile) along y-direction and shear stress of 20 N/mm ² . Compute the principal stresses.	4	3	4	2
15.	a)	Calculate the change in diameter, change in length and change in volume of a thin cylindrical shell of 1200 mm diameter, 15 mm thick and 4 m long when subjected to an internal pressure of 4 N/mm ² . Adopt $E = 2 \times 10^5$ N/mm ² and Poisson's ratio μ =0.30.	4	4	5	2
	b)	Compute the thickness of metal required for a cylindrical shell of internal diameter 160 mm to withstand an internal pressure of 60 MPa. The maximum hoop stress is not to exceed 120 MPa.	4	3	5	2
16.	a)	A reinforced short concrete column $300 \text{mm} \times 400 \text{mm}$ in section is reinforced with steel bars with a total area of 2800 mm^2 . The column carries a load of 400 kN . If the modulus of elasticity for steel is 15 times that of concrete, compute the stresses in concrete and steel.	4	3	1	2
	b)	A simply supported beam of span 4m is subjected to a uniformly distributed load of 20kN/m over the entire span. The cross section is rectangular with a width of 250mm and depth of 400mm. Compute the bending stress at the mid-span.	4	4	2	2
17.		Answer any <i>two</i> of the following:	one			
	a)	A cantilever beam of span 3m is made up of T-section and carries a point load of 60kN at the free end. The flange is 250mm wide and 20mm thick while the web is 20mm wide and 180mm deep. Compute the bending stresses at the fixed end of the beam.	4	3	3	2
	b)	At a point in a beam the normal stress along its length is 70 N/mm ² . The shear stress at that point is 25 N/mm ² . Compute the stresses on a plane whose normal is inclined at 30° to the longitudinal axis. Also compute the principal stresses and planes on which they act.	4	3	4	2
	c)	A thin cylinder of diameter 220mm and thickness 10mm is subjected to an internal fluid pressure of 8N/mm ² . Compute the circumferential and longitudinal stresses in the cross section of the cylinder.	4	4	5	2
	Μ	: Marks; L: Bloom's Taxonomy Level; CO; Course Outcome; PO: Program	nme (Dutec	me	

i)Blooms Taxonomy Level - 120%ii)Blooms Taxonomy Level - 230%iii)Blooms Taxonomy Level - 3 & 450%
